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Abstract A transient, three-dimensional mathematical model of a single-pass laser surface
alloying process has been developed to examine the macroscopic heat, momentum and species
transport during the process. A numerical study is performed in a co-ordinate system moving
with the laser at a constant scanning speed. A fixed grid enthalpy-porosity approach is used,
which predicts the evolutionary development of the laser-melted pool. It is observed that the
melting of the added alloying element is not instantaneous in case its melting temperature is
higher as compared to that of the base metal. As a result, the addition of alloying element at the
top surface cannot be accurately modelled as a mass flux boundary condition at that surface. To
resolve this situation, the addition of alloying elements is formulated by devising a species
generation term for the solute transport equation. By employing a particle-tracking algorithm and
a simultaneous particle-melting consideration, the species source term is estimated by the amount
of fusion of a spherical particle as it passes through a particular control volume. Numerical
simulations are performed for Ni as alloying element on Al base metal. It is revealed that the
present model makes a distinctly different prediction of composition variation within the
resolidified microstructure, as compared to a model that does not incorporate any considerations
of distributed melting.

Nomenclature
aP ; a

0
P = discretisation equation coefficients

b = small number to avoid division by
zero

c = specific heat
D = species mass diffusion coefficient
fl = liquid fraction of the solute

F±1 = inverse of latent heat function
g = acceleration due to gravity
h = convective heat transfer coefficient
hs = sensible enthalpy
H = total enthalpy
k = thermal conductivity

The current issue and full text archive of this journal is available at
http://www.emerald-library.com/ft
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Introduction
Surface properties such as wear and corrosion resistance are governed by a
thin layer of material in a localized area over the surface. Laser surface alloying
(LSA) is one such technique where, without changing the bulk properties of a
component, material properties can be improved in a localized region. During
this process, as the high- intensity moving laser heat source interacts with a
thin molten layer of the substrate, several complex phenomena such as melting,
Marangoni convection, mixing of the powder feed, alloy solidification and
resulting micro-structural evolution occur. Looking into the complexity of the
problem, our aim is to develop systematically a reliable computational model
that can simulate the entire physical process which includes heating and
subsequent melting of the substrate due to a moving heat source, surface-
tension driven convection, mixing of the added species and solidification of the
molten material. The model may be used to link the process parameters for the
prediction of final microstructure.

Numerical studies of heat transfer and fluid flow in laser melted pools have
been performed by several researchers in the past (Chan et al., 1984, 1987, 1988;
Basu and Srinivasan, 1988; Kou and Wang, 1986; Chen and Huang, 1990; He et
al., 1995), mostly employing two-dimensional or axi-symmetric models. From
the above studies, good insights have been obtained on the behaviour of laser
melted pools subjected to various process parameters. Only a few studies

kp = partition coefficient
K = morphological constant
L = latent heat of fusion
mf = powder feed rate
_m = mass flux
n = normal direction
P = pressure
q00 = heat flux
Q = actual power input
rq = radius of heat input
R = reference width of the pool
R = universal gas constant
S = source term
T = temperature
t = time
u = x-component of velocity
uscan = laser scanning velocity
v = y-component of velocity
vn = interface velocity
w = z-component of velocity
x0 = x-coordinate in a fixed frame of

reference
x,y,z = co-ordinates fixed to the laser source

Greek symbols
�T = coefficient of volumetric expansion

of heat

�C = coefficient of volumetric expansion
of solute

� = efficiency
ÿ = diffusion coefficient in general

transport equation
�H = latent enthalpy
" = emissivity
� = general scalar variable
� = relaxation factor
� = surface tension
�T = surface tension coefficient of

temperature
�e = Stefan-Boltzman constant
� = density
� = viscosity

Subscripts
Al = aluminium
Fe = iron
max = maximum value
m = melting point
n = iteration level/normal direction
old = old iteration value
p = nodal coefficient
ref = reference

Superscripts
/ = stationary co-ordinate system
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(notably that of He et al. (1995)) are on laser surface alloying, in which mass
transfer is taken into account in addition to heat transfer and fluid flow. He et
al. (1995) presented a two-dimensional finite element model for a single-pass
laser surface alloying of copper on aluminium base metal. The alloying element
is assumed to be introduced on the pool surface in a fully molten state. This is
modelled numerically as a mass flux boundary condition at the pool surface.
This approximation holds reasonably well as long as the melting point of the
substrate is much higher than that of the alloying element (such as in the case
of aluminium on iron). This boundary condition, however, is generally
inappropriate when the melting point of the alloying element is higher than
that of the substrate (such as in the case of nickel on aluminium). In this
situation, an alloying particle will melt only within that region of the pool
where it experiences a temperature higher than its melting point. The particle,
instead of melting completely on the pool surface, may melt progressively as it
is convected within the pool, thus resulting in a distributed species mass source
within the pool.

The aim of the present work is to model an LSA process with a distributed
species mass source term. This involves modelling the melting of an alloying
particle as it is convected within the pool. The molten mass at any location
forms the species mass source at that location, which leads to a distributed
species mass source in the melt pool. The necessary velocity and temperature
fields are obtained by the solution of three-dimensional, transient mass,
momentum and energy conservation equations. The numerical solution is
obtained using a fixed-grid, primitive-variable, finite volume methodology with
an enthalpy-porosity approach (Brent et al., 1988) to treat melting and
solidification. Finally, the species conservation equation is solved using the
above velocity field and above distributed mass source. It may also be noted
here that the present model is the first three-dimensional model in this
application, which is a more realistic representation of the actual physical
situation.

Mathematical and numerical modelling
Figure 1 shows a schematic diagram of a typical laser surface alloying process.
As shown in the figure, a laser beam moving with a constant scanning speed in
the horizontal direction and having a defined power distribution strikes the
surface of an opaque material, and a part of the energy is absorbed. A thin melt
pool forms on the surface due to laser heating. Simultaneously, a powder of a
different material is fed into the pool, which mixes with the molten substrate by
convection and diffusion. As the laser source moves away from a location,
resolidification of the zone occurs, leading to a final microstructure of the
alloyed surface. It should be noted that only a part of the heat available from
the laser beam heats the surface of the workpiece and leads to the formation of
a molten pool. Hence, in the thermal modelling of laser surface alloying, the
actual power, q, that goes into the workpiece as heat input is usually specified
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through a parameter, �, the laser beam efficiency, by the relation q = �Q, where
Q represents the total laser power.

Model description
The entire modelling is systematically divided into four modules. The first
module consists of a solution of three-dimensional mass, momentum and
energy conservation equations to obtain the velocity and temperature fields in
and around the laser melted pool. This velocity field is used in the second
module of the model, which involves tracking of alloying particles (in a
Lagrangian frame) as it is advected within the pool. The third module
simulates the progressive melting of each particle as it is advected within the
pool, using the temperature field (obtained from the first part of the model) as a
boundary temperature of the particle. As the melting particle is tracked, we
record the amount of molten particle in each control volume along its trajectory.
The same procedure is repeated for each particle, in order to obtain a statistical
distribution of species mass source. Finally, in the fourth module, the species
conservation equation is solved after each time-step using the above velocity
field and distributed mass source. In this model, it is assumed that the alloying
particles are spherical in shape and move without any relative velocity with the
fluid particles. The details of the module descriptions are as follows.

Solution of the velocity and temperature fields (module 1). If (x0, y, z) is a
co-ordinate system in the stationary frame, then the generalised convection-
diffusion equation in that frame can be written as:

@

@t
��� � � @

@x0
�u�� � � @

@y
�v�� � � @

@z
�w�� �
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ÿ
@�
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� �
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@y
ÿ
@�
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� �
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@z
ÿ
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@z

� �
� S:

�1�

Figure 1.
A schematic diagram of

the physical problem
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Since the molten pool moves with the laser beam, the problem is more
conveniently studied in a reference frame fixed with the laser. Although a final
quasi-steady state will be reached, we prefer to study it in a transient mode so
as to predict the evolution of pool development. The final shape and size of the
pool depends on this evolution, and hence it cannot be determined accurately
by a direct quasi-steady formulation. If (x, y, z) is a Cartesian co-ordinate
system fixed with the laser, the following transformation equations can be
written:

x � x0 ÿ uscant; �2�
where uscan is the scanning speed of the laser. Differentiating equation (2) with
respect to t and noting that uscan is a constant, we get:

u � u0 ÿ uscan: �3�
Using the above transformation equations, the governing equations in the
moving frame can be written as (Dutta et al., 1995):

. continuity equation:

@

@x
�u� � � @

@y
�v� � � @

@z
�w� � � 0; �4�

. x-momentum equation:

@

@t
�u� � � @

@x
��uu� � @

@y
��uv� � @

@z
��uw� � ÿ @p

@x

� @

@x
�� @u

@x
� � @

@y
�� @u

@y
� � @

@z
��@u

@z
� � Sx ÿ @

@x
��uscanu�;

�5�

. y-momentum equation:

@

@t
�v� � � @

@x
��uv� � @

@y
��vv� � @

@z
��vw� � ÿ @p

@y
� @

@x
�� @v

@x
�

� @

@y
�� @v

@y
� � @

@z
��@v

@z
� ÿ @

@x
��uscanv� � �g�T�T ÿ Tref �

��g�C�C ÿ Cref � � Sy;

�6�

. z-momentum equation:

@

@t
�w� � � @

@x
��uw� � @

@y
��vw� � @

@z
��ww� � ÿ @p

@z
� @

@x
�� @w

@x
�

� @

@y
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� � @
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�� @w

@z
� ÿ @

@x
��uscanw� � Sz;

�7�
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where Sx, Sy and Sz are source terms, which will be described subsequently;
and

. energy equation:

@

@t
�H� � � @

@x
��uH� � @

@y
��vH� � @

@z
��wH� � @

@x
�k @T

@x
�

� @

@y
�k @T

@y
� � @

@z
�k @T

@z
� ÿ @

@x
�uscanH� �:

�8�

The enthalpy, H, of a material can be expressed as:

H � hs ��H ; �9�

hs � cT; �10�
where hs is the sensible heat, and �H is the latent heat content. In order to
establish a mushy phase change, the latent heat contribution is specified as a
function of temperature, T, and the resulting expression is:

�H � f �T�: �11�
Since latent heat is associated with the liquid fraction, fl , we can write:

�H � f �T� � L for T � Tl

� flL for Ts � T < Tl

� 0 for T < Ts;
�12�

where Tl is the liquidus temperature at which solid formation begins, Ts is the
solidus temperature at which full solidification occurs, and L is the latent heat
of fusion. Substituting the expression for H from equations (9) and (10) in the
energy equation (8), we arrive at the following final form of the energy
equation:

@

@t
�T� � � @

@x
��uT� � @

@y
��vT� � @

@z
��wT� � @

@x
�k
c

@T

@x
� � @

@y
�k
c

@T

@y
�

� @

@z
�k
c

@T

@z
� ÿ @

@x
�uscan T ��H

c

� �� �
� Se;

�13�

where Se is the source term in the energy equation, which can be written as:

Se � 1

c

@

@t
��H� � ÿ r: �

c
~u�H

� �
: �14�

In the above formulation, a single-domain enthalpy-porosity model (Brent et al.,
1988) is used for the phase change process. In this method, the interface
geometry and location come out as a part of the solution, and hence explicit
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interface tracking is not required. The source terms in the three momentum
equations (5)-(7) take the following forms:

Sx � Au; �15�

Sy � Av; �16�

Sz � Aw; �17�
where the expression for A is given by the relation:

A � ÿ K�1ÿ fl�2
f 3
l � b

 !
: �18�

In the above equation, K is a morphological constant of a high value (say, 108),
b is a small number (say, 10±4) to avoid division by zero and fl is the liquid
fraction calculated as (�H)/L. The source term in each of the equations (5)-(7)
represents a porous-medium-like resistance in the mushy region at the solid-
liquid interface. In the fully liquid region, the value of fl is 1, making the porous-
medium-resistance terms zero. On the other hand, in the fully solid region, fl = 0,
thus forcing the porous medium resistance terms to be very large. These large
source terms offer a high flow resistance, making the velocities in the entire
solid region effectively zero. In the mushy region, however, fl lies between 0 and
1, and the porous medium resistance varies smoothly from zero in the liquid
region to a high value in the solid region, thus making the velocities vary
accordingly.

For boundary conditions, at the top surface, we employ a heat balance as
follows:

ÿq00�r� � h�T ÿ T1� � �e"�T4 ÿ T4
1� � ÿk

@T

@y
; �19�

where q00(r) is expressed as a Gaussian heat distribution at the top surface, i.e.:

q00�r� � Q

�r2
q

exp ÿ r2

r2
q

 !
: �20�

In the above equation, Q is the net energy input (laser power � efficiency) and
rq is the radius of heat input. The top surface is assumed to be flat. Also, at the
top surface, the Marangoni convection leads to a shear stress balance
expressed as:

�yx � ÿ��@u

@y
�h �

@�

@T
�@T

@x
�h; �21�



Computational
modelling

583

�yz � ÿ��@w

@y
�h �

@�

@T
�@T

@z
�h; �22�

where � is the surface tension.
The four side faces are subjected to the convective heat transfer boundary

condition:

ÿk
@T

@n

� �
wall

� h�T ÿ T1�; �23�

where n is in the direction of the outward normal of any side face. The bottom
face being insulated, the appropriate boundary condition is:

@T

@y

� �
bottom

� 0: �24�

The three-dimensional governing equations of mass, momentum and energy
conservation are simultaneously solved numerically using a pressure-based,
semi-implicit finite volume technique according to the SIMPLER algorithm
(Patankar, 1980). The algorithm is appropriately modified to include the
enthalpy-porosity model for the phase change process. The porous-medium
source terms in the momentum equations (5)-(7) are calculated for any control
volume using the value of liquid fraction, fl, for that particular control volume.
The value of liquid fraction is calculated as fl = (�H)/L, where �H, the latent
heat content of a particular control volume, is obtained from the solution of the
energy conservation equation. In the numerical solution of the energy
conservation equation, a special treatment is applied to update the nodal latent
heat content. The procedure, which is elaborated in Brent et al. (1988) and
Voller and Prakash (1987), is briefly described below. The enthalpy update is
governed by the equation:

��Hp�n�1 � ��Hp�n �
ap

a0
p

� �hp�n ÿ Fÿ1��H�� 	
; �25�

where n denotes the iteration level and � is a relaxation factor. The terms ap

and a0
p are the nodal-point coefficient and the coefficient associated with the

transient part in the discretised energy equation, respectively.
Particle tracking (module 2). The position and local temperature in the

trajectory of an alloying particle (Lagrangian frame) introduced into the molten
pool is calculated from the fully developed Eulerian velocity field obtained in
module 1. It is assumed that the particle moves with the same velocity as that of
the fluid at that location. The trajectory of the particle is governed by the
following ordinary differential equations:

dx

dt
� u�x; y; z; t0�; �26a�
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dy

dt
� v�x; y; z; t0�; �26b�

dz

dt
� w�x; y; z; t0�; �26c�

where u, v and w are the velocity components in the three directions. These
velocity components are numerically integrated in a time marching scheme
using a fourth-order Runge-Kutta method to obtain the complete particle
trajectory. It should be noted that, from module 1, the velocity components are
specified only at the grid points. For all other locations, a tri-linear interpolation
is performed using the velocities at the neighbouring grid points. Thus, the
incremental positions are obtained in the three directions and the solution is
marched with time to get the complete particle trajectory. Simultaneously, the
local temperature is interpolated at each and every incremental location in the
locus of the particle. This information will be necessary in the calculations
pertaining to particle melting in module 3.

Particle melting (module 3). After introduction of an alloying particle into the
melt pool, it is subjected to temperature boundary conditions in accordance
with the local temperature of the pool. As the particle is advected within the
pool, its temperature boundary condition also varies according to its location.
The particle-melting module solves the transient temperature distribution
within the particle (including melting) using a conduction-based analysis.
Because of the radially symmetric temperature boundary condition, the heat
transfer inside a spherical particle is assumed to be one-dimensional. The
energy conservation equation for the particle in a spherical coordinate system
is given by:

@

@t
��T� � 1

cr2

@

@r
�kr2 @T

@r
� ÿ 1

c

@

@t
���H�: �27�

Since the particle is moving in the melt pool, the surface temperature will vary
with its location. This information can be obtained from module 2. Thus,
during time marching, the interpolated local temperature in the melt pool for a
particle location is used as the temperature boundary condition of the particle
at that location. Accordingly, equation (27) is solved using the following
boundary conditions:

At r � 0;
@T

@r
� 0 and at r � rp�t0�;Tb�t0� � T�x; y; z; t0�; �28�

where rp(t0) and Tb(t
0) are the radius and surface temperature of the particle,

respectively, at the specified time t0 in the Lagrangian frame. T(x, y, z, t0) is the
interpolated local temperature (obtained from module 2) in accordance with the
current location of the particle in the melt pool.
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Since no analytical solution is available for the case of a melting spherical
particle with a time-dependent boundary condition, a numerical solution is
adopted. A control volume based finite difference method (Patankar, 1980) is
used to formulate the 1D enthalpy-based energy equation of a melting spherical
particle, in order to solve the temperature field within the same.

Species distribution (module 4). As the melting particle is tracked, the
amount of molten particle in each control volume along its trajectory is
recorded. This procedure is repeated for each and every particle introduced on
the pool surface at various locations. Eventually, a statistical distribution of
species mass source inside the pool can be obtained. Using the species mass
source distribution, the following modified solute transport equation is
obtained:

@

@t
�Cl� � � @

@x
��uCl� � @

@y
��vCl� � @

@z
��wCl� � r:��l flDlrCl�

�kpCl
@

@t
��fl� ÿ @

@x
�uscanCl� � � kpCl

@

@x
��uscanfl� � Sgen;

�29�

where Sgen represents a local volumetric species generation term. Sgen is
calculated by the relation:

Sgen �
_mcv

�V
; �30�

where _mcv is the rate at which the species mass melts in a control volume
(statistical average for all particles) and �V is the volume of the particular
computational cell. It can be noted that _mcv is obtained as a consequence of
particle tracking and particle melting modules of the present model, in
accordance with the local temperature distribution within the particle. Also, it
is evident that Sgen is not active at all locations in the computational domain. In
fact, it is active only at the control volumes where the particles melt. Hence, the
above formulation of the species source term is a more realistic model of
distributed melting than the specification of a mass flux boundary condition at
the free surface, as used in previous studies.

The boundary conditions consistent with equation (29) at the interfaces are
given by:

. melting front:

vnCl � ÿDl
@Cl

@n
; �31�

where vn is the projection of the traverse speed onto the normal to the
solid-liquid boundary; and
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. solidification front:

�1ÿ kp�vnCl � ÿDl
@Cl

@n
: �32�

The above modified species conservation equation is then solved numerically
using a finite volume methodology (Patankar, 1980).

Numerical simulation
Code validation. The numerical code pertaining to the solution of a three-
dimensional set of coupled convection-diffusion equations incorporating phase
change considerations is validated by solving a Marangoni-convection driven
arc welding problem, as described in Dutta et al. (1995). The results in Dutta et
al. (1995) for the case of arc welding are exactly reproduced using the present
code, and hence a separate figure for comparison is not included here. The
computer code for the particle-melting module is validated against an
analytical solution given in Carslaw and Jaeger (1959) corresponding to a fixed
surface temperature. The validated codes are subsequently utilised for the
solution of the present problem.

Choice of grid size and time step for module 1. In laser surface alloying, the
presence of an intense heat flux leads to large temperature gradients in the base
metal near the laser centre. This also induces rapid melting of the metal
(typically in milliseconds) just after the laser is applied. As a result, choice of
grid size and its distribution, along with the time steps for computation, are of
paramount importance for numerical stability and accurate predictions of fluid
flow and heat transfer in the pool.

At the top surface of the pool, viscous shear forces according to equations
(21) and (22) balance surface tension forces caused by the temperature
gradients. In order to resolve the velocity field at the free surface, the vertical
gridding at these locations is ascertained by a scaling analysis, estimating the
viscous boundary layer thickness created by surface tension driven flow. Such
an estimate of boundary layer thickness (yref) is given by (Sarkar et al., 2001):

yref � �rq

�uref

� �1
2

; �33a�

where:

uref � �Tq

��cp

� �
: �33b�

According to the physical properties depicted in Table I, it turns out to be 9� 10±6m.
Accordingly, in order to resolve the velocity boundary layer computationally,
six control volumes are accommodated within that distance in the vertical
direction. Just beneath this fine grid system, a grid size of 5� 10±5m is used up
to the bottom of the pool. In the horizontal planes, various grid sizes are tried,
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and it is found that a grid size of 6 � 10±5m within the molten pool and its
vicinity is adequately fine, because a finer grid system is not found to alter the
results appreciably. Outside the pool in the solid region, a non-uniform coarser
grid system is used. Overall, a 55 � 40 � 55 non-uniform grid is chosen within
a domain size of 10mm� 5mm� 10mm.

The time steps for computation are varied according to the stages of the
melting process. During the pre-melting conduction phase, large time steps are
used. But to take advantage of this, one needs to have an approximate estimate
of time for initiation (tref) of melting before starting computation. This can be
estimated as follows (Sarkar et al., 2001):

tref � �cpk
�T

q

� �2

; �34a�

where:

�T � �uref rq

yref�T
: �34b�

For the present set of problem data, tref comes to be approximately 0.01s.
Accordingly, during the conduction phase, large time steps (about 0.005s) are
allowed until melting begins. Once melting starts, the high temperature
gradient in the pool sets up a strong Marangoni convection, leading to high

Table I.
List of physical

properties

Values

Physical properties (constants)
�T (for aluminium) 2.0 � 10±5 K±1

Tm (for aluminium) 660.0C
Tm (for nickel) 1,452.0C
Tboil (for aluminium) 2,520.0C
L (for aluminium) 3.95420 � 105J/kg
L (for nickel) 5.9 � 105J/kg
� (for aluminium) 2,237kg/m3

� (for nickel) 8,890kg/m3

�T (for aluminium) ±3.5 � 10±4N/mK

Physical properties (variables)
� (for aluminium) 1.492 � 10±4 exp(16,500/RT) Nm/s2

k (for aluminium)
273K � T � 373K 238.0W/mK
373K � T � 993K 231.4W/mK

T � 993K 109.3W/mK
k (for nickel) 74.9W/mK
c (for aluminium)

273K � T � 373K 971J/kgK
373K � T � 993K 1049.2J/kgK

T � 993K 1212.0J/kgK
c (for aluminium) 441J/kgK
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fluid velocities of the order of 1m/s. Hence, to avoid numerical oscillations, time
steps during the initial stages of pool development are chosen to be very small
(about 0.0005s). Typically after about 0.4s, the molten pool reaches a more
developed stage, the implication of which is that changes in the dependent
variables between two consecutive time steps are relatively small compared to
those during the initial transients. At this stage, larger time steps (about 0.001s)
can be safely used in order to save computation time. After 1s, the pool
virtually reaches a fully developed state and at this stage time steps as high as
0.005s can be used without any numerical oscillation. Finally, to ensure that the
fully developed stage has reached completely, computation is carried up to 1.5s.

Choice of grid size and time step for modules 2 and 3. Regarding the particle-
melting module, a grid size of 202� 1 is used for a particle size of 35�m radius
to capture the interface movement accurately.

For the case of particle tracking, the error involved in the numerical
integration with time marching must be reduced such that the trajectory of the
particle is predicted accurately. Since the incremental position obtained in the
first time step is going to be the initial condition for the next time step, the error
associated in the first integration will propagate in the next time step, thereby
leading to an erroneous species source term. Since the error associated with the
numerical integration is a function of the time-step chosen, it is important to
choose a sufficiently small time step for integration. Besides, there is a second
criterion for choosing the time step. The assumption made in the species source
addition is that for the entire time step, the mass molten (and hence the species
source added) is at the same initial location as at the beginning of the time step.
Hence, the time step is chosen in such a way that the particles do not skip any
control volume during the integration. This is ensured by scaling the time step
(�t) as: �t ~ �x/umax, where �x is the distance between two grid points.
Based on the above two criteria, it is found that a time-step of 2.5 � 10±6s is a
suitable one and is used for both modules 2 and 3.

Convergence criteria. Convergence is declared if the following condition is
satisfied at each grid point:

�ÿ �old

�max

���� ���� � 10ÿ4; �35�

where � stands for each variable (u, v, w, T and C) at a grid point at the current
iteration level, �old represents a value at the previous iteration level, and �max is
the maximum value of the variable at that iteration level in the entire domain.
Besides, an overall energy balance is performed during each time step, and the
iterations are carried out until the absolute value of the energy balance is
within 0.1 per cent of total energy input.

Results and discussion
Numerical simulations are carried out with Ni as alloying element and Al as the
base metal. The thermo-physical properties, shown in Table I, are assumed to
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be functions of temperature and composition, and are taken from Brandes
(1983). The process parameters appropriate for the simulated problem are listed
in Table II.

In order to validate the distributed melting approach, it is first applied to the
case of laser surface alloying of aluminium on iron base metal (which
represents the use of a lower melting-point alloy with a higher melting-point
base metal). As a separate approach, numerical computations are also executed
considering the mass flux of aluminium at the top surface to be in a completely
molten state. The Neumann boundary condition (at the top surface) for the
latter case can be written as:

ÿ D
@C

@y

� �
top

� _m; �36�

where _m is the mass flux of aluminium distributed uniformly over a circular
area of radius rq. In equation (36), D is the diffusion coefficient of the alloying
element in the molten base material. The mass flux _m is assumed to be uniform
and is calculated from the powder feed rate (mf) as:

_m � mf

�r2
q

 !
: �37�

It can be noted that the assumption of mass flux boundary condition at the top
surface (i.e. equivalently, an instantaneous melting of the alloying element) is
appropriate in this case, since the melting point of aluminium is much lower
than that of iron. A comparison is made between the solidified interface
composition obtained from the two procedures (with and without distributed
melting approach), and is shown in Figure 2. The two results show excellent
agreement, thus validating the procedure used for the distributed melting
approach, which we use for the present formulation.

Nature of flow and temperature fields in the melt pool
Figures 3 and 4 show the velocity and temperature fields in three different
views. A loop of very high velocity is found to exist immediately adjacent to the
top surface of the pool. This flow is induced by the surface tension gradient
(Marangoni convection) at the surface of the pool. It may be noted that this

Table II.
List of process

parameters

Process parameters Values

Q (total heat input) 2,400W
rq (radius of heat input) 0.8mm
Radius of nickel particles 35 � 10±6m
mf (mass flux added) 2 � 10±5kg/s
� (efficiency of heat input) 0.22
uscan (laser scanning speed) 0.008m/s
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turning effect of the fluid can be captured numerically, provided grid sizes near
the top surface are made fine enough, according to the criterion discussed in the
previous section. For the present case, the surface tension is a decreasing
function of temperature. As a result, liquid metal near the centre of the pool is
pulled towards the relatively cooler pool edges, resulting in counter-rotating
vortices as shown in Figure 3. After the hot liquid metal from the pool centre
reaches the edge, it turns downwards. It may be noted from Figure 3 that the
weld pool geometry closely resembles that predicted by conduction analysis
alone. The reason is that liquid aluminium has a low Prandtl number
(Pr� 0.004), and hence the role of convection in the overall transport is not very
significant. As a result, convection in the pool does not alter the pool geometry
significantly, unlike the case of an iron substrate which has a higher Prandtl
number. The resulting Peclet number (umax � depth/(�) for the case of
aluminium is also found to be less (Pe� 61) compared to that of iron.

Behaviour of particles and the species distribution in the melt pool
In the temperature field shown in Figure 4, there are two regions which are of
importance in determining the nature of species distribution in the melt pool.
The first region is the zone where the temperatures are higher than the melting
point of the alloying element, nickel (1,4528C). The other region is the zone
where the temperatures are lower than the melting point of the alloying element
but above the melting point of the base metal, aluminium (6608C). These two
regions are shown in Figure 4. In a three-dimensional picture, these two regions
resemble two stretched hemispheres or cups. The stretching is due to the effect

Figure 2.
Comparison of the
solidified interface
composition variation
with height, with and
without source term
modification for the case
of aluminium on iron for
the parameters
uscan = 0.008m/s,
power = 2.4kW,
� = 0.13, and
powderfeed = 0.02gm/s
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Figure 3.
Velocity vector plot for

the case of
uscan = 0.008m/s,

power = 2.4kW,
� = 0.22, and

powderfeed = 0.02gm/s
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Figure 4.
Temperature contours
for the case of
uscan = 0.008m/s,
power = 2.4kW,
� = 0.22, and
powderfeed = 0.02gm/s
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of laser scanning and latent heat interaction. The particles introduced in the
melt pool surface can fall in either region, as shown in Figure 5. It is found in
the computation that when the nickel particles fall within the inner cup, where
the temperatures are well above the melting point of nickel, they melt very
quickly. As a result, they act as species sources at locations where they enter
the melt pool surface. If a particle falls between the two cups as shown in
Figure 5, it will be first dragged or advected radially outwards by the strong
Marangoni convection. Subsequently, as can be seen from Figure 5b, these
particles can reach the inner cup and begin to melt. This happens because of
the turning effect at the edges of the melt pool (see Figures 3b and 3c).
Instantaneously, the molten species diffuses locally, thus acting as a mass
source at that location. Hence, instead of having a species mass source only on
the surface of the pool, we will now have a species source distributed inside the
melt pool. Mathematically, the distributed mass sources act as a species
generation term at the corresponding locations. In this manner, the source
terms generated due to each and every particle introduced on the surface are
calculated and statistical data are maintained for each control volume. These
data of species mass source distribution are then used in solving the species
conservation equation. Typical surface temperature variation of the particles
following the trajectories shown in Figure 5 is depicted in Figure 6.

Solute concentration in the melt pool
The concentration field obtained inside the molten pool with the distributed
source terms is shown in Figure 7. In this case, the maximum concentration of
nickel is found near the centre of the melt pool surface. The reason for this can
be explained as follows. From the concentration field (Figure 7) and the
temperature field (Figure 4), it may be noticed that the concentration of the
species is more on the top surface of the `̀ inner cup'', where the nickel particles
are found to melt almost instantaneously. Hence, due to the effect of distributed
species mass source, the melt pool always experiences a concentrated species
flux on the portion of the pool surface within the inner cup, where the
temperature ranges from the melting point of the alloying element to the
maximum temperature of the pool (just beneath the laser). The species mass is
almost zero in the remaining area of the melt pool surface. This results in a
maximum concentration always near the centre of the melt pool surface.
However, the effect of dilution and solute rejection also features at the melting
and solidification fronts, respectively. This can be visualised by comparing the
concentration fields near the solidification front and the melting front, where it
is found that the average concentration is more near the solidification front
than near the melting front due to solute rejection and dilution, respectively. It
is also clear from Figure 7b that the iso-concentration lines are not vertical but
stretched towards the solidification front. The final concentration distribution
inside the melt pool is determined by the solution of the species conservation
equation (29), which includes advection and diffusion in addition to the
distribution of species sources described above.
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Figure 5.
Particles' behaviour in
the melt pool
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Solute concentration field of the solidified alloy
The solute concentration distribution in the solidified alloy can be determined
from the concentration distribution at the solidification front. Since the
solubility of the solute in the solid phase is less than that in the liquid phase, the
solute enters the solid phase with a concentration of kpC. If we multiplied the
species concentration at any point on the solidification front by kp and then
map it on a vertical line, we would obtain the concentration variation with
height along the centre line of the solidified material (Figure 8a). If the same
procedure is repeated for other longitudinal planes away from the centre line, a
full mapping of the species concentration distribution in a cross-section of the
solidified alloy can be obtained, as shown in Figure 8b. A striking result seen in
the interface composition variation shown in Figure 8a-b is that the maximum
composition of nickel is found near the bottom of the solidified alloy. The
reason for this behaviour can be explained as follows. If the concentration field
is viewed at the longitudinal section of the molten pool (shown in Figure 7b), it
may be observed that the iso-concentration lines near the bottom are shifted
towards the solidification front due to the effect of convection and distributed
species source terms. Hence, during solidification, the bottom portion of the
solidification front will experience more concentration. After multiplying the
concentration at any location at the solidification interface with the partition
coefficient, we will obtain the corresponding concentration at that location in
the solidified alloy. In the cross-sectional view of the solidified alloy
concentration distribution (Figure 8b), we can see that the concentration is

Figure 6.
Surface temperature

variation of the particles
with time for various
locations in the melt

pool are shown for
particles demonstrated

in Figure 5
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Figure 7.
Solute concentration
field in the molten pool
(in terms of mass
fraction of nickel) for the
case of uscan = 0.008m/s,
power = 2.4kW,
� = 0.22, and
powderfeed = 0.02gm/s
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found to increase towards the centre of the solidified alloy cross-section. This
can be explained from the cross-sectional view of the temperature field
(Figure 4c). The region bounded by the inner cup is comparatively smaller than
the total cross-section of the melt pool. Hence, the distributed mass source is
concentrated within the inner cup, resulting in a concentrated species source
near the centre of the melt pool. Thus, we may expect more concentration of
species near the middle of the solidified alloy.

Using the same parameters for Ni on Al, a comparison is made between the
present case (i.e. distributed melting case) and the case performed with the
species added entirely as a flux condition at the pool surface (according to
equations (36) and (37)). The results obtained are compared for the interface

Figure 8.
Solute concentration
field in the solidified

alloy (in terms of mass
fraction of nickel) for the
case of uscan = 0.008m/s,

power = 2.4kW,
� = 0.22, and

powderfeed = 0.02gm/s
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composition variation with height, which is shown in Figure 9. There is a
significant difference found between the two results, which further confirms
that for relatively higher melting point alloying elements, the distributed
melting approach has to be adopted in order to predict a more realistic
composition distribution. The numerical results shown in Figure 9 also show a
comparison with the experimental findings of Balachandran (1998), and it is
found that the experimental trend is more accurately captured by the present
model than by the one without source term modification.

Conclusions
A three-dimensional transient numerical model is developed to predict the mass,
momentum, heat and species transport during LSA. The addition of alloying
element to the molten pool is represented by formulation of a species source term
in the solute transport equation. To achieve this purpose, the alloyed particles are
tracked in the melt pool. Simultaneously, the temperature distribution inside the
spherical particles is solved by assuming its surface temperature to be the local
temperature in the melt pool. The amount of particle mass that fuses as it passes
through a particular control volume is used as a species mass source to solve the
species conservation equation. Numerical computations are performed for Ni as
an alloying element on Al base metal. It is found that the present model
represents the actual species in a more realistic manner than a model without
provision for representing distributed melting situations.

Figure 9.
Comparison of
numerical and
experimental results for
the solidified interface
composition with the
same parameters
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